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OPTIMAL-ORDER NONNESTED MULTIGRID METHODS 
FOR SOLVING FINITE ELEMENT EQUATIONS 

II: ON NON-QUASI-UNIFORM MESHES 

SHANGYOU ZHANG 

ABSTRACT. Nonnested multigrid methods are proved 'to be optimal-order 
solvers for finite element equations arising from elliptic problems in the pres- 
ence of singularities caused by re-entrant corners and abrupt changes in the 
boundary conditions, where the multilevel grids are appropriately refined near 
singularities and are not necessarily nested. Therefore, optimal and realistic 
finer grids (compared with nested local refinements) could be used because of 
the freedom in generating nonnested multilevel grids. 

1. INTRODUCTION 

Multigrid methods provide optimal-order solvers for linear systems of finite 
element equations arising from elliptic boundary value problems (cf. references 
in [7] and [5]). The convergence of multigrid methods was proved by many 
authors (cf., e.g., [8], [2] and [6]) under the assumptions of quasi-uniformity of 
grids and Hl+ -regularity. However, quasi-uniform multigrid methods are not 
well suited for problems with singularities because finite elements do not capture 
singularities well on such meshes, and the convergence rate would deteriorate 
owing to singularities (Cm _'/2 for H1+f-regularity, cf. [2]). 

Yserentant proved the convergence of multigrid methods on non-quasi- 
uniform grids (cf. [10]). However, it is not quite clear how to implement 
the methods proposed by Yserentant in practical situations. It is difficult to 
construct, say, four or five nested locally-refined grids which reasonably satisfy 
the mesh refinement condition proposed by Babuska, Kellogg and Pitkaranta in 
[1] (see (1.3a-b) below). Couplings of triangles, the minimal-angle condition 
(see (1.2) below) and the control of the growth of total grid points, give rise to 
many difficulties in local, nested grid refinements. To avoid these difficulties, it 
is natural to use nonnested multigrid methods (cf. [1 1] or [12]). The nonnest- 
edness of multilevel grids is well illustrated by the example shown in Figure 1, 
where the triangulations on the triangle OAB are generated by simply refining 
each triangle on the coarser level into four subtriangles and then moving all 
grid points appropriately to the corner 0. This paper is devoted to proving the 
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convergence of the nonnested multigrid methods on such non-quasi-uniform 
meshes (satisfying (1.3a-b)) . 

Although a mesh could have a quite arbitrary relation with its lower level 
in nonnested multigrid methods, each mesh must be related to the coarser one 
in such a way that the intergrid transfer operators ('Ik, depending only on 
the locations of the fine-grid points on the coarse-level triangles) can be eas- 
ily generated by computer codes. Also, we should construct meshes such that 
more information can be passed by intergrid transfer operators. A subdividing- 
moving technique (described above) was used by Scott and the author for gen- 
erating nonnested, tetrahedral meshes in their general 3-d nonnested multigrid 
code NMGTM (cf. [9]). Because of many variations in generating nonnested 
meshes, we leave discussions on grid generations and numerical experiments to 
[13]. For example, a mapping technique (maps nested, quasi-uniform meshes to 
nonnested, non-quasi-uniform ones) is also discussed in [13]. Nonnested multi- 
grid methods on quasi-uniform meshes are also analyzed by Bramble, Pasciak 
and Xu within their framework in [3]. 
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FIGURE 1 
Nonnested refinements on AOAB. The square OACB (rotated 
above) is a part of the domain. AABC has standard multi- 
grid refinements, but a subdividing-moving method is applied 
in AOAB. Here, the grid points on OA satisfy 1xi - xi-= 
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For simplicity, we consider the model problem 

-Au+u=f in Q, 
u=O on FD, 

Ou/On = 0 on F N' 

where Q is a bounded polygonal domain in R2 with the boundary subdivided 
into two parts FD and FN. We assume FD has a positive measure. Finite 
element approximation problems are defined as follows: Find uk EVk such 
that 

(1.1) a(uk, v) = F(v) VV E Vk, k= 1, 2, ..., 

where a(u, v) = fQ(01u0uv + 02u02v + uv)dx, F(v) = fQ fv dx, and Vk is 
the space of continuous, piecewise linear (on a grid k ) functions which vanish 
on FD. Here, {S k, k = 1, 2, ... } is a family of nondegenerate triangulations 
on Q: there exists an ao > 0 such that 

(1.2) min min{ the three angles of K} > ao Vk. 

But we can have S g S+, . Let HD(Q) be the space of H1 functions which 
vanish on F in the sense of traces; then HL c 

Now we state the essential assumption on the triangulations (cf. [1]): Let 
the points x1, ..., xn be the vertices of the domain Q ,including the points 
of abrupt changes from Dirichlet to natural boundary conditions. For each 
vertex xi we define Ki = 1 if the two sides having the endpoint xi belong 
either both to FD or both to F N' and Ki = 1/2 otherwise. Let 0 < 6i < 27r 
be the interior angle of Q at the point xi; because of possible changes in the 
boundary conditions, the case Oi = 7r is permitted. Let ai = min{ 1, Ki7r/0}. 
Then 1/4 < ai < 1 holds. We choose /3i with I - ai < /3i < 1 and /Bi = O if 
a =1 . Let Ofl(x) = HIn7I x -_xilj for ,B = (f ... . fin), where I * I denotes 
the Euclidean distance. We assume that the triangulations { Sk } satisfy the 
condition: Let K E S be a (closed) triangle; then 

(1.3a) chk maxq0fl(x) < hK < Thk minq fl(x) if xi ? K for all i, 

(1.3b) chk maxq fl(x) < hK < ?hk imaxq (x) if xi E K for some i. 

Here, c and c are some positive constants independent of K and k, and hK 
is the diameter of K. The hk in (1.3a-b) is a global "mesh size" of Sk. For 
convenience, we simply let hk = 2 k in this paper. It was shown by Babuwska et 
al. in [1] that dim Vk < Chkj2 . We assume that dim VkJ Chk-2 k(dim +1)/4 
Vk. The meshes generated by the subdividing-moving method mentioned above 
will satisfy this condition naturally. Further, we assume that the meshes are 
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locally comparable: 

sup {cardinality({K' E 9 I K' n K $= 0 })} < Iko, 
(1.4) K E $/J~ Vk 

sup {hK / min{hK/ I K E k,' K'n K $= 0 }} < fl, 
KE$k? 

for some fl0 > 0. In fact, (1.4) should be consequences of (1.2) and (1.3a-b). 
We define some weighted Sobolev norms associated with the function 0A (x) 

defined above. Let 

(1.5) (v, W)fl = f (x)v(x) w(x) dx 

be a weighted (weight q2 ) L2-inner product and H , K A the norm induced by 

(a *) . Let H0'f /(Q) be the space of all Lebesgue measurable functions having 

finite 1 l- -norm. Replacing the q by q 2 in (1.5), we define (v, w)fl and 

H0' A(Q) similarly. Let 1j. 112 A= 11 + Z1a1=2 D * [lo A and H2' (j) 
be the corresponding space. Here, H1 (Q) is the usual Sobolev space. It was 
shown in [1] that H2 4(Q) c C(Q) and that H1(Q) c H0'f(Q). Therefore, 
nodal-value interpolation operators are well defined for functions in H2', (' ) 
and VkccH0'f(Q)Vk. 

By the Riesz representation theorem, the bilinear form a(, *) defines a lin- 
ear, symmetric, positive definite operator Ak in (Vk, (., .)f): a(v, w) = 

(Akv, W)fl VV, W E VkJ. We define a family of discrete norms on Vk 

(1.6) 2VHik = (v, A V)_f Vv E Jj, 0 s < 2 

We note that HIII* Iok = 11 *Ofl and that H 1* HI1,k = 11 H . For simplicity, 
we let I|H| = I * I k* Let Ik: C(Q) n H(Q) ---+ Vk be the usual nodal-value 
interpolation operator associated with the triangulation g. 

We now define a nonsymmetric (cf. Definition 4.1 in ?4), nonnested multigrid 
scheme (cf. [2]). The full multigrid method has two iterative processes. The 
overall process involves solving problems (1. 1) sequentially for k = 1, 2, ... to 
get ik To solve (1.1) on the kth level, we interpolate the ui as an initial 
guess and then repeat several times the second, recursive process: 

Definition 1.1. (The kth level nonnested multigrid scheme.) 
(1) For k = 1, (1.1) or the following (1.8) is solved by any method. 
(2) For k > 1, a final guess wm+i will be generated from an initial guess 

WO as follows. First, m presmoothings will be performed: 

7)(Wz - WI-_ l, v)o' _f = Ak lI(F(v) - a(w_, l, V)) 

VV E V , 1= 1, 2, ..., m, 

where Ak is the maximal eigenvalue of Ak and F(.) is either the F(.) in (1. 1) 
or the F(.) in (1.8) below. To define wm+1 , we need to construct a (k - 1) st 
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level residual problem: Find q E k_- 1 such that 

(1.8) a(q, v) = F(Ikv) - a(wm, Ikv) = F(v) Vv E Vk_,. 

Let q E k_- be the approximation of q obtained by applying p iterations of 
the ( k - 1 )st level scheme to (1.8) starting with initial guess zero; then we let 

(1.9) WM+1 = Wm + Ikq. 

If meshes are nested, the Ik in (1.8) and (1.9) is an identity. However, 
an intergrid transfer operator, " Ik ", is necessary in computation, no matter 
whether the meshes are nested or not. If we remove the Ik in (1.8), q would 

be the a(., +)-projection of an iterative error. Correspondingly, we define two 

operators Qk- 1 Pk-1 HH (Q) Vk1 by 

(1.10) a(Qk- Iv, w) a(v Ikw) VW E 
a(Pk 1v,5 w) =a(v , w) , 

2. PRELIMINARY RESULTS 

In this section, we will prove some lemmas concerning Ik and introduce some 

results of Babugska, Kellogg and Pitkaranta in [1]. In the rest of this paper, "<" 

stands for " < C" with the constant C independent of the functions being 
estimated and the level number k. 

Lemma 2.1. Let (1.2) and (1.4) hold; then 

||W -IkVIII 
- 

IllW-VIII VV E Vk_1i VW E Vk' 

Proof: See Proposition 2.1 of [12]. The equivalence of I IHI(Q) and 11 =IIH (Q) 
in HD (Q) follows from a general Poincar6 inequality in [4, Theorem 

1.2.1]. n 

Lemma 2.2. Let (1.2)-(1.4) hold; then 

IIV-IkVIIo -fl hkIIIvIII VV E Vk_1s 

To prove the lemma, we use a lemma in [1]. 

Lemma 2.3 (Lemma 4.3 in [1]). Let K be a triangle with one vertex at 0, 
a $? 0, and let u be defined on K with weak first derivatives which satisfy 
fK xI, vu12dx < oc. Then there is a constant A depending on u and a 
constant C(a, 5aK)I independent of u but depending on a and the minimal 
angle aK of K, such that 

'K IxK2u - A12 < Cf 2X vu dx, 

and 
IA| < C fxJ | V ul dx. n 
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Proof of Lemma 2.2. For any K E k, let SK = U{K' E k _ I K' nK 7? 0}; 
then K c SK. Let v E VkI; then v - Ikv is piecewise linear on K and 
vanishes at the three vertices of K. We consider two cases: xi ? K Vi or 
some vertex xi of Q is a vertex K. In the first case, we use (1.3a) and (1.4) 
to derive 

(2.1) 'K q( (v-IV)2 dx < 2 hkh7 I (hK max{21 VI I dx 

= 
2 
h2 max | Vv1 dx h 1 

7 IVv1 dx. 

If xi E K, without loss of generality, we may assume xi = 0. Applying Lemma 
2.3 and the Schwarz inequality, we obtain 

J| 
2 

- IkV 2 dx XI | -23 |X| _Ikv 1dx 

2 |x| I(v-Ikv)-A1 dx + 2A 2 
XI2fl dx 

I X|2 V (v - IkV)I dx 

+ (f |X 21l V (V -Ikv)I dx) j q2 dx 

' X '122l IV (V-_ kV)I2 dx (1 + |X 2X2f' dx 0- 2dx) 

Here, we used the fact that IxI7 OA2 on K. By (1.3b), it follows that 

hK2 < 2h2 max{02 } h2 Ix 12fl, h2h 2 . Therefore, 
2 C- max ql k k 

kK 
f 

42 2-IkV| dx h j23 f | V (v -IkV) dx 
(2.2) 

K 42 

XEK ~~~~~~k 

Combining (2.1) and (2.2), we conclude, by (1.4), that 

| 2vIVlo_ 04 v-l 
2 

2dx h2 
1 

| V 1| dx IHV -IkV Ifl= fK fl IV-,kV dI k f VVd 

h2 
1 

| V 12 dx= Ch 21VI2 J(i, h 2|V| 2.O k 1 Kk H( kIIVI 

Theorem 2.4 (Theorem 3.2 in [1]). Let f E H?'fl(Q) and u E H (Q) satisfy 
a(u, v) = F(v) Vv E HL(Q). Then u E H2'1(Q) and 

IIUII2 ? ' CIfI3fl. ? 
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Lemma 2.5 (Lemma 4.5 in [1]). Let (1.2) and (1.3a-b) hold; then 

1U-IkU|H (0) < ChJU12 f VUEH 2'f(Q) n HD(Q). ? 

Theorem 2.6 (Theorem 5.2 in [1]). Let (1.2) and (1.3a-b) hold; then 

lu - PkU gO -?< Chk1u1-PkU||HH(Q) VU E H'(Q). o 

3. OPTIMAL COMPUTATIONAL ORDER OF W-CYCLE METHODS 
In this section, we will show some lemmas concerning coarse-level corrections 

and coarse-level projections. We then prove an inverse inequality. Finally, the 
two-level and multilevel W-cycle nonnested multigrid methods will be shown 
to have a constant rate of convergence. The proof given here follows a route of 
Bank and Dupont in [2] and is almost identical to a proof given by the author 
in [12] for nonnested multigrid methods on quasi-uniform meshes. 

Lemma 3.1. Let (1.2)-(1.4) hold; then 

|||v Pk_ 1vJJ - hkv2k VV E Vk 

Proof: For any v E Vk, let v = Pk-I v. By the Schwarz inequality, we have 

(3.1) |||v - v||= a(v, v -vb) = a(v, v - PkV) < |||V|112,k0V -PkV|110k 

We then use a duality argument to estimate the second term: Let u E H (Q) 
solve 

a(u, w) = (2 (v - PkV), w) Vw E H (Q). 

By Theorem 2.4, u E H2'f(Q) and 1U112fl A 2(v - Pkv)llofl 
= - Pkb lI IA. Therefore, by Lemma 2.5, we can derive 

Hv-PkTIIOh k = (v-PkV, v-Pkv)_f = a(u , v-PkV) 

= a(u, v - v) + a(u, V - Pkv) 

(3.2) _ 111U Ik-lUIII 1-V VH + h||u - 1k1H |||v-Pkv|11 

' |U 112, fl(hk -I II IV - flI + hk I I ) Pk f|) II1 

h hk11u2,f(3JJ~v 
- V0 + JJJPk(v - )11) 

hk||v - Pk v||||||V -v|| 

Combining (3.1) and (3.2), the lemma is proved. o 

Lemma 3.2. Let (1.2)-(1.4) hold; then 

111Pk-lV - Qk lV11 ' hkv2llk VV E Vk. 
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Proof. For any v E Vk', by (1.10), it follows that 

a(Pk_lv-Qk-lV,w)=a(v,w)-a(v,Ikw) VWEJVkl. 

By Lemma 2.2 and Theorem 2.6, we can complete the proof as follows: 

IPklV - QkVlV|| = sup a(v, w - Ikw) 

(3.3) = sup a(v, PkW - IkW) < sup ||IV II2,klIIPkW - IkW||0ok 
W W 

< IH|VH I2,k sUp(IW - IkWO, fl + IW - Pkw 1o, f) C hkIIIVII2,k ? 
w 

We remark that the Pk in (3.1) and (3.3) are introduced only for the purpose 

of applying the Schwarz inequality. 

Lemma 3.3. Let (1.2)-(1.3b) hold; then 

(3.4) |I|vIII < h7 1HvHlok Vv E Vk. 

Proof: Let v E Vk and K E 9k; then v is linear on K. By (1.2)-(1.3b), we 

get 

1| v| Idx < maxv (x) = C h-2v dx h2 | 2(X)V dx. 
K fffXElK 

Summing over all triangles in $k, (3.4) is proved. o 

Theorem 3.4 (Two-level methods). Let (1.2)-(1.4) hold and q = q in (1.9). For 
any 0 < y < 1, there exists an integer m independent of the level number k 
such that 

H|Uk -Wm+iIH < Y|||uk -WOIII 

where uk, wi, q and q are defined in (1.1) and (1.7)-(1.9). 

Proof. Let the iterative errors be denoted by e1 = Uk - w1 for 0 < 1 < m + 1. 
Our goal is to estimate em+i = em - Ikq. Noting that q = Qk-1em, we can 

apply Lemmas 2.1, 3.1 and 3.2 sequentially to get 

(3.5) II|em+l||III -||Iem -|| qII -< 
Iem -Pk-lemill + IjIPk-rem - 11 hkIllemil 

By (3.4), it follows that the maximal eigenvalue of Ak, Ak' is bounded by 
2 

Ch-j . Therefore, the following estimates for the smoothing (1.7) hold (see, 
e.g., [2]), 

(3.6) IIHemIII < HIle0III and IIHemIHI2kk '011. 

We conclude that I I em+ll < Cm 1121el IeI| . Let m > C2/y2; then the theorem 
is proved. E 

It is standard to derive the constant rate of convergence of W-cycle methods 

from the constant rate of convergence of two-level methods. 



NONNESTED MULTIGRID METHODS 447 

Theorem 3.5 ( W-cycle methods). Let (1.2)-(1.4) hold. For any 0 < y < 1, 
there exists a < y and an integer m, all independent of the level number k, 
such that, if 

(3.7) IIHq - qIII < 5PIIHqIII 

for some p > 1, then 11jUk - Wm+lH I < ?2IIUk - WOIL. 

Proof: By the induction hypothesis (3.7) and by (3.5), it follows that 

Illem+JHII I Illem -q +Ic +llq-ql I (I+ ')IIlem -qIII + YII|emIII 

-< hk IIem|I2,k + a IllemIll 

By (3.6), we get IIem+1iHI < (Cm 1/2 + C"P)IIIeo0 I. To complete the proof, we 
first choose y small enough such that Cyp < y/2, and then choose m large 
enough such that Cm- /2 < y/2. n 

In practice, we replace the (, *)_ in the presmoothing (1.7) by some simpler 

inner product bk(, *), which induces a norm equivalent to the Ho S-norm 
(cf. [2]). In [10], Yserentant gave a good bk(., ): 

bk(u, v) =h u(nj)v(nj) Vu, V E VkJ 
KE$4 nyE{ three vertices of K} 

After such a modification of (1.7), Theorem 3.4 and 3.5 remain valid. It is then 
standard to show the linear order of computation of the W-cycle methods (cf., 
e.g., [2]). 

4. CONVERGENCE OF V-CYCLE METHODS 

In this section, we will define symmetric nonnested multigrid methods first 
and then study the rate of convergence of the (variable) V-cycle, symmetric, 
nonnested multigrid methods. 

Definition 4.1 (The kth level symmetric nonnested multigrid scheme). 
(1) For k = 1, (1.1) or (1.8) is solved exactly or by doing ml smoothings 

of (1.7). 
(2) For k> 1, 

w2mk+l 
will be generated from wo as follows: 

(2-a) mk presmoothings of (1.7) are performed to generate wm; 
(2-b) Wm is corrected by Ikq (see (1.8)-(1.9)) to generate wm +l; 

(2-c) mk postsmoothings of (1.7) are performed to generate W2m+l. 

We note that the number of presmoothings and postsmoothings, mk, may 
depend on the level number k. By (1.10), Ik Qk- 1 is a selfadjoint operator in 

(4k 1 a(vQ, V)): 

(4.1) a(Ik Qk-1, 5v) = a(Qk-IV5 Qk-lV) = a(v ,Ik Qk- I ) REV E Vk- 
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We can combine Lemmas 2.1 and 3.1-3.3 to get 

1V - IkQk-lV111 < 1V - Qk lV11 

(4.2) < 1V - Pk 1V111 + 111Pk iV - Qk lV11 

hk|V|1112,k =CoIk 'H|VH|k Vv ECO 

Let p(B) be the spectral radius of an operator B. In contrast to nested 
multigrid methods, (i) IkQk-1 may not be an a(., .)-projection operator; (ii) 
P(I - Ik Qk-l) < 1 may not hold; and (iii) 

(4.3) P(IkQk-1) < 1 

may fail. In particular, violation of (4.3) means (I - IkQk-1) is not a non- 
negative operator. To study such operators, we need the following lemma. By 
expanding functions in Vk as Fourier series of the eigenfunctions of Ak' it is 
straightforward to verify the next lemma. 

Lemma 4.2. Let B: Vk -- Vk be a selfadjoint operator in (Vk, a(., .)); then 
the following are equivalent: 

(1) la(Bv, v)l < ya(v, v) Vv E Vk; 

(2) JJJBvJJJ < yJJlvJJJ Vv E Vk; 

(3) p(B) < y. E 

Let Bk be the V-cycle (p = 1 in Definition 1.1) multigrid reducing operator 
associated with the iteration defined in Definition 4.1; i.e., after one cycle of 
the iteration, the iterative error changes from e to Bke. Then 

(4.4) Bk = (I-AI Mk) (I-(Ik-IkB )(I-AkA k, 
k = 2, 3. 

By (4.1), it follows that all Bk are, inductively, selfadjoint with respect to 

a(., *) . 

Lemma 4.3. If p(Bk-l) < y < l , then p(Bk) < y + co/ 2-mk 

Proof Let v = E cikq i E V, , where Ok i is an eigenfunction of Ak associated 
with 2k i . Let v = (I - Ak/4k)mkv . By Lemma 4.2, (4.1) and (4.4), we have 

Ja(Bkv, v)| < a(V - IkQk-iD , v)l + Ja(Bk-lQk-f 5 Qk-if) 

< la(D- IkQk-iD , D)l + ya(IkQk.1f) V ) 

< (1 + y)la(V - IkQk-iv, )I + ya(v, v ) 

< (1 + Y)Hf - 
IkQk-1iv11 111V||1 + YlllVb11 

2 
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By (4.2), the Schwarz inequality and y < 1, it follows that 

ja(Bkv, V), < (1 + Y)C"A/11 + YlllVD12 

k~~~~~~~~~X|||| k Il I'D I 1 2 
' 

< (1 + y)c1 ( 2mk +2 + 2 (1 - A) c 

+Y sup (2mkx+ 1)(1-x)A kcki 

2m/~~2/ O IxY<I 
k, k C2 

< (c / E 2 + Y) IIIV1112. ? 

By Lemma 4.3, we can derive trivially the constant rate of convergence of 
symmetric W-cycle methods (see Theorem 3.5). The following two theorems, 
too, are direct corollaries of Lemma 4.3. However, we cannot show the optimal 
order of computations of V-cycle methods from either one. With additional 
assumptions on the multiple meshes (e.g., assuming (4.3)), it is possible to ob- 
tain somewhat better results (cf. [3]). But in view of a numerical example in 
[1 1], the number of smoothings, mik, has to be sufficiently large, depending on 
couplings of meshes. 

Theorem 4.4 ( V-cycle methods). Let m. = m > 2c/2 for j = 2, 3, ...; then 

p(Bk) < kco //2 , 2 < k < (Vl/c) + 1, 

provided that p(BI) < co/ 2m. 

Theorem 4.5 (Variable V-cycle methods). For any 0 < y < 1, let m1 = 

22j-1c2/y2 for j = 2, 3, ;then 

p(Bk) < Y. k = 2, 3, .... 

provided p(B1) < y/2. o 
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